1,797 research outputs found

    Algal Viruses: The (Atomic) Shape of Things to Come

    Get PDF
    This is the final version. Available on open access from MDPI via the DOI in this recordVisualization of algal viruses has been paramount to their study and understanding. The direct observation of the morphological dynamics of infection is a highly desired capability and the focus of instrument development across a variety of microscopy technologies. However, the high temporal (ms) and spatial resolution (nm) required, combined with the need to operate in physiologically relevant conditions presents a significant challenge. Here we present a short history of virus structure study and its relation to algal viruses and highlight current work, concentrating on electron microscopy and atomic force microscopy, towards the direct observation of individual algae⁻virus interactions. Finally, we make predictions towards future algal virus study direction with particular focus on the exciting opportunities offered by modern high-speed atomic force microscopy methods and instrumentation.The previously unpublished AFM images shown in this manuscript were generated in the Plymouth Marine Laboratory and University of Exeter Environmental Single Cell Genomics Facility which was supported by the UK’s Natural Environment Research Council (NERC) and The Wolfson Foundation. C.T.E. is supported by an EPSRC and Bristol Nano Dynamics Ltd PhD studentship

    Wave attenuation at a salt marsh margin: A case study of an exposed coast on the Yangtze estuary

    Get PDF
    To quantify wave attenuation by (introduced) Spartina alterniflora vegetation at an exposed macrotidal coast in the Yangtze Estuary, China, wave parameters and water depth were measured during 13 consecutive tides at nine locations ranging from 10 m seaward to 50 m landward of the low marsh edge. During this period, the incident wave height ranged from <0.1 to 1.5 m, the maximum of which is much higher than observed in other marsh areas around the world. Our measurements and calculations showed that the wave attenuation rate per unit distance was 1 to 2 magnitudes higher over the marsh than over an adjacent mudflat. Although the elevation gradient of the marsh margin was significantly higher than that of the adjacent mudflat, more than 80% of wave attenuation was ascribed to the presence of vegetation, suggesting that shoaling effects were of minor importance. On average, waves reaching the marsh were eliminated over a distance of similar to 80 m, although a marsh distance of >= 100 m was needed before the maximum height waves were fully attenuated during high tides. These attenuation distances were longer than those previously found in American salt marshes, mainly due to the macrotidal and exposed conditions at the present site. The ratio of water depth to plant height showed an inverse correlation with wave attenuation rate, indicating that plant height is a crucial factor determining the efficiency of wave attenuation. Consequently, the tall shoots of the introduced S. alterniflora makes this species much more efficient at attenuating waves than the shorter, native pioneer species in the Yangtze Estuary, and should therefore be considered as a factor in coastal management during the present era of sea-level rise and global change. We also found that wave attenuation across the salt marsh can be predicted using published models when a suitable coefficient is incorporated to account for drag, which varies in place and time due to differences in plant characteristics and abiotic conditions (i.e., bed gradient, initial water depth, and wave action).

    A Non-Destructive, Tuneable Method to Isolate Live Cells for High-Speed AFM Analysis

    Get PDF
    Suitable immobilisation of microorganisms and single cells is key for high-resolution topographical imaging and study of mechanical properties with atomic force microscopy (AFM) under physiologically relevant conditions. Sample preparation techniques must be able to withstand the forces exerted by the Z range-limited cantilever tip, and not negatively affect the sample surface for data acquisition. Here, we describe an inherently flexible methodology, utilising the high-resolution three-dimensional based printing technique of multiphoton polymerisation to rapidly generate bespoke arrays for cellular AFM analysis. As an example, we present data collected from live Emiliania huxleyi cells, unicellular microalgae, imaged by contact mode High-Speed Atomic Force Microscopy (HS-AFM), including one cell that was imaged continuously for over 90 min

    Proton Driven Plasma Wakefield Acceleration

    Full text link
    Plasma wakefield acceleration, either laser driven or electron-bunch driven, has been demonstrated to hold great potential. However, it is not obvious how to scale these approaches to bring particles up to the TeV regime. In this paper, we discuss the possibility of proton-bunch driven plasma wakefield acceleration, and show that high energy electron beams could potentially be produced in a single accelerating stage.Comment: 13 pages, 4 figure

    Mitochondrial and nuclear genes suggest that stony corals are monophyletic but most families of stony corals are not (Order Scleractinia, Class Anthozoa, Phylum Cnidaria)

    Get PDF
    Modern hard corals (Class Hexacorallia; Order Scleractinia) are widely studied because of their fundamental role in reef building and their superb fossil record extending back to the Triassic. Nevertheless, interpretations of their evolutionary relationships have been in flux for over a decade. Recent analyses undermine the legitimacy of traditional suborders, families and genera, and suggest that a non-skeletal sister clade (Order Corallimorpharia) might be imbedded within the stony corals. However, these studies either sampled a relatively limited array of taxa or assembled trees from heterogeneous data sets. Here we provide a more comprehensive analysis of Scleractinia (127 species, 75 genera, 17 families) and various outgroups, based on two mitochondrial genes (cytochrome oxidase I, cytochrome b), with analyses of nuclear genes (ßtubulin, ribosomal DNA) of a subset of taxa to test unexpected relationships. Eleven of 16 families were found to be polyphyletic. Strikingly, over one third of all families as conventionally defined contain representatives from the highly divergent "robust" and "complex" clades. However, the recent suggestion that corallimorpharians are true corals that have lost their skeletons was not upheld. Relationships were supported not only by mitochondrial and nuclear genes, but also often by morphological characters which had been ignored or never noted previously. The concordance of molecular characters and more carefully examined morphological characters suggests a future of greater taxonomic stability, as well as the potential to trace the evolutionary history of this ecologically important group using fossils

    Impact of insulin signaling and proteasomal activity on physiological 2 output of a neuronal circuit in aging D. melanogaster

    Get PDF
    The insulin family of growth factors plays an important role in development and function of the nervous system. Reduced insulin and insulin-growth-factor signaling (IIS), however, can improve symptoms of neurodegenerative diseases in laboratory model organisms and protect against age-associated decline in neuronal function. Recently, we showed that chronic, moderately lowered IIS rescues age-related decline in neurotransmission through the Drosophila giant fiber escape response circuit. Here, we expand our initial findings by demonstrating that reduced functional output in the giant fiber system of aging flies can be prevented by increasing proteasomal activity within the circuit. Manipulations of IIS in neurons can also affect longevity, underscoring the relevance of the nervous system for aging

    ERK1/2 signaling dominates over RhoA signaling in regulating early changes in RNA expression induced by endothelin-1 in neonatal rat cardiomyocytes

    Get PDF
    Cardiomyocyte hypertrophy is associated with changes in gene expression. Extracellular signal-regulated kinases 1/2 (ERK1/2) and RhoA [activated by hypertrophic agonists (e.g. endothelin-1)] regulate gene expression and are implicated in the response, but their relative significance in regulating the cardiomyocyte transcriptome is unknown. Our aim was to establish the significance of ERK1/2 and/or RhoA in the early cardiomyocyte transcriptomic response to endothelin-1.Cardiomyocytes were exposed to endothelin-1 (1 h) with/without PD184352 (to inhibit ERK1/2) or C3 transferase (C3T, to inhibit RhoA). RNA expression was analyzed using microarrays and qPCR. ERK1/2 signaling positively regulated approximately 65% of the early gene expression response to ET-1 with a small (approximately 2%) negative effect, whereas RhoA signaling positively regulated approximately 10% of the early gene expression response to ET-1 with a greater (approximately 14%) negative contribution. Of RNAs non-responsive to endothelin-1, 66 or 448 were regulated by PD184352 or C3T, respectively, indicating that RhoA had a more significant effect on baseline RNA expression. mRNAs upregulated by endothelin-1 encoded a number of receptor ligands (e.g. Ereg, Areg, Hbegf) and transcription factors (e.g. Abra/Srf) that potentially propagate the response.ERK1/2 dominates over RhoA in the early transcriptomic response to endothelin-1. RhoA plays a major role in maintaining baseline RNA expression but, with upregulation of Abra/Srf by endothelin-1, RhoA may regulate changes in RNA expression over longer times. Our data identify ERK1/2 as a more significant node than RhoA in regulating the early stages of cardiomyocyte hypertrophy

    Improving electrocoagulation floatation for harvesting microalgae

    Get PDF
    Electro-coagulation floatation (ECF) is a foam-floatation dewatering method that has been shown to be a highly effective, rapid, and scalable separation methodology. In this manuscript, an in-depth analysis of the gas and flocculant levels observed during the process is provided, with microbubbles observed in the 5–80μm size range at a concentration of 102–103 bubbles mL−1. Electrolysis of microalgae culture was then observed, demonstrating both effective separation using aluminium electrodes (nine microalgal species tested, 1–40μm size range, motile and non-motile, marine and freshwater), and sterilisation of culture through bleaching with inert titanium electrodes. Atomic force microscopy was used to visualise floc formation in the presence and absence of algae, showing nanoscale structures on the magnitude of 40–400nm and entrapped microalgal cells. Improvements to aid industrial biotechnology processing were investigated: protein-doping was found to improve foam stability without inducing cell lysis, and an oxalate buffer wash regime was found to dissolve the flocculant whilst producing no observable difference in the final algal lipid or pigment profiles, leaving the cells viable at the end of the process. ECF separated microalgal culture had an algal biomass loading of 13% and as such wasideal for direct down-stream processing through hydrothermal liquefaction. Highbio-crude yieldswere achieved, though this was reduced slightly on addition of the Al(OH)3 after ECF, with carbon being distributed away to the aqueous and solid residue phases. The amenability and compatibility of ECF to integration with, or replacement of, existing centrifugation and settling processes suggests this process may be of significant interest to the biotechnology industry

    Surface-initiated growth of copper using isonicotinic acid-functionalized aluminum oxide surfaces

    Get PDF
    Isonicotinate self-assembled monolayers (SAM) were prepared on alumina surfaces (A) using isonicotinic acid (iNA). These functionalized layers (iNA-A) were used for the seeded growth of copper films (Cu-iNA-A) by hydrazine hydrate-initiated electroless deposition. The films were characterized by scanning electron microscopy (SEM), electron-dispersive X-ray spectroscopy, atomic force microscopy, X-ray photoelectron spectroscopy, X-ray diffraction, and advancing contact angle measurements. The films are Cu0 but with surface oxidation, and show a faceted morphology, which is more textured (Rq = 460 ± 90 nm) compared to the SAM (Rq = 2.8 ± 0.5 nm). In contrast, growth of copper films by SnCl2/PdCl2 catalyzed electroless deposition, using formaldehyde (CH2O) as the reducing agent, shows a nodular morphology on top of a relatively smooth surface. No copper films are observed in the absence of the isonicotinate SAM. The binding of Cu2+ to the iNA is proposed to facilitate reduction to Cu0 and create the seed for subsequent growth. The films show good adhesion to the functionalized surface

    Expression of CXCL10 is associated with response to radiotherapy and overall survival in squamous cell carcinoma of the tongue

    Get PDF
    Five-year survival for patients with oral cancer has been disappointingly stable during the last decades, creating a demand for new biomarkers and treatment targets. Lately, much focus has been set on immunomodulation as a possible treatment or an adjuvant increasing sensitivity to conventional treatments. The objective of this study was to evaluate the prognostic importance of response to radiotherapy in tongue carcinoma patients as well as the expression of the CXC-chemokines in correlation to radiation response in the same group of tumours. Thirty-eight patients with tongue carcinoma that had received radiotherapy followed by surgery were included. The prognostic impact of pathological response to radiotherapy, N-status, T-stage, age and gender was evaluated using Cox's regression models, Kaplan-Meier survival curves and chi-square test. The expression of 23 CXC-chemokine ligands and their receptors were evaluated in all patients using microarray and qPCR and correlated with response to treatment using logistic regression. Pathological response to radiotherapy was independently associated to overall survival with a 2-year survival probability of 81 % for patients showing a complete pathological response, while patients with a non-complete response only had a probability of 42 % to survive for 2 years (p = 0.016). The expression of one CXC-chemokine, CXCL10, was significantly associated with response to radiotherapy and the group of patients with the highest CXCL10 expression responded, especially poorly (p = 0.01). CXCL10 is a potential marker for response to radiotherapy and overall survival in patients with squamous cell carcinoma of the tongue
    corecore